Recursive Bayesian state and parameter estimation using polynomial chaos theory

نویسندگان

  • Benjamin L. Pence
  • Jeffrey L. Stein
  • Hosam K. Fathy
چکیده

This paper joins polynomial chaos theory with Bayesian estimation to recursively estimate the states and unknown parameters of asymptotically stable, linear, time invariant, state-space systems. This paper studies the proposed algorithms from a pole/zero locations perspective. The estimator has fixed pole locations that are independent of the estimation algorithm (and the estimated variables). Only the estimator zero locations are affected by estimation. This paper uses a 3rd order differential equation to study the behavior of the proposed estimator. It uses pole/zero maps and Bode plots to observe how the polynomial chaos based estimators vary the system zero locations to make the expanded polynomial chaos output most like (in some Bayesian sense) the 3rd order system output.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation for Mechanical Systems via an Explicit Representation of Uncertainty

Purpose – To propose a new computational approach for parameter estimation in the Bayesian framework. Aposteriori PDFs are obtained using the polynomial chaos theory for propagating uncertainties through system dynamics. The new method has the advantage of being able to deal with large parametric uncertainties, non-Gaussian probability densities, and nonlinear dynamics. Design/methodology/appro...

متن کامل

A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I: Theoretical Approach

This is the first part of a two-part article. A new computational approach for parameter estimation is proposed based on the application of the polynomial chaos theory. The polynomial chaos method has been shown to be considerably more efficient than Monte Carlo in the simulation of systems with a small number of uncertain parameters. In the new approach presented in this paper, the maximum lik...

متن کامل

Polynomial-Chaos-Based Bayesian Approach for State and Parameter Estimations

Two new recursive approaches have been developed to provide accurate estimates for posterior moments of both parameters and system states while making use of the generalized polynomial-chaos framework for uncertainty propagation. The main idea of the generalized polynomial-chaos method is to expand random state and input parameter variables involved in a stochastic differential/difference equat...

متن کامل

Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters

Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo approaches for quantifying the effects of such uncertainties on the system response. This work uses the polynomial chaos framework to develop new methodologies for the simulation, parameter estimation, and control of mechanical sys...

متن کامل

Nonlinear Estimation in Polynomial Chaos Framework

In this paper we present two nonlinear estimation algorithms that combine generalized polynomial chaos theory with higher moment updates and Bayesian framework. Polynomial chaos theory is used to predict the evolution of uncertainty of the nonlinear random process. In the first estimation algorithm, higher order moment updates are used to estimate the posterior non Gaussian probability density ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011